Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Science ; 381(6655): 313-319, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37384673

RESUMO

Loss of H2A-H2B histone dimers is a hallmark of actively transcribed genes, but how the cellular machinery functions in the context of noncanonical nucleosomal particles remains largely elusive. In this work, we report the structural mechanism for adenosine 5'-triphosphate-dependent chromatin remodeling of hexasomes by the INO80 complex. We show how INO80 recognizes noncanonical DNA and histone features of hexasomes that emerge from the loss of H2A-H2B. A large structural rearrangement switches the catalytic core of INO80 into a distinct, spin-rotated mode of remodeling while its nuclear actin module remains tethered to long stretches of unwrapped linker DNA. Direct sensing of an exposed H3-H4 histone interface activates INO80, independently of the H2A-H2B acidic patch. Our findings reveal how the loss of H2A-H2B grants remodelers access to a different, yet unexplored layer of energy-driven chromatin regulation.


Assuntos
Chaetomium , Montagem e Desmontagem da Cromatina , Cromatina , Histonas , Nucleossomos , Cromatina/química , DNA/química , Histonas/química , Nucleossomos/química , Microscopia Crioeletrônica , Chaetomium/química , Chaetomium/ultraestrutura
2.
Nucleic Acids Res ; 51(12): 6430-6442, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37167006

RESUMO

The DEAH-box helicase Prp43 has essential functions in pre-mRNA splicing and ribosome biogenesis, remodeling structured RNAs. To initiate unwinding, Prp43 must first accommodate a single-stranded RNA segment into its RNA binding channel. This allows translocation of the helicase on the RNA. G-patch (gp) factors activate Prp43 in its cellular context enhancing the intrinsically low ATPase and RNA unwinding activity. It is unclear how the RNA loading process is accomplished by Prp43 and how it is regulated by its substrates, ATP and RNA, and the G-patch partners. We developed single-molecule (sm) FRET reporters on Prp43 from Chaetomium thermophilum to monitor the conformational dynamics of the RNA binding channel in Prp43 in real-time. We show that the channel can alternate between open and closed conformations. Binding of Pfa1(gp) and ATP shifts the distribution of states towards channel opening, facilitating the accommodation of RNA. After completion of the loading process, the channel remains firmly closed during successive cycles of ATP hydrolysis, ensuring stable interaction with the RNA and processive translocation. Without Pfa1(gp), it remains predominantly closed preventing efficient RNA loading. Our data reveal how the ligands of Prp43 regulate the structural dynamics of the RNA binding channel controlling the initial binding of RNA.


Assuntos
Chaetomium , RNA Helicases DEAD-box , RNA , Trifosfato de Adenosina/metabolismo , Chaetomium/química , Chaetomium/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Helicases/genética , Conformação Molecular , RNA/metabolismo , RNA Helicases/metabolismo , Splicing de RNA , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular
3.
Phytochemistry ; 210: 113653, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972807

RESUMO

Chaetomium (Chaetomiaceae), a large fungal genus consisting of at least 400 species, has been acknowledged as a promising resource for the exploration of novel compounds with potential bioactivities. Over the past decades, emerging chemical and biological investigations have suggested the structural diversity and extensive potent bioactivity of the specialized metabolites in the Chaetomium species. To date, over 500 compounds with diverse chemical types have been isolated and identified from this genus, including azaphilones, cytochalasans, pyrones, alkaloids, diketopiperazines, anthraquinones, polyketides, and steroids. Biological research has indicated that these compounds possess a broad range of bioactivities, including antitumor, anti-inflammatory, antimicrobial, antioxidant, enzyme inhibitory, phytotoxic, and plant growth inhibitory activities. This paper summarizes current knowledge referring to the chemical structure, biological activity, and pharmacologic potency of the specialized metabolites in the Chaetomium species from 2013 to 2022, which might provide insights for the exploration and utilization of bioactive compounds in this genus both in the scientific field and pharmaceutical industry.


Assuntos
Alcaloides , Anti-Infecciosos , Chaetomium , Chaetomium/química , Anti-Infecciosos/farmacologia , Alcaloides/química , Dicetopiperazinas , Antioxidantes/farmacologia
4.
Nat Commun ; 13(1): 476, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079002

RESUMO

Ribosomes are complex and highly conserved ribonucleoprotein assemblies catalyzing protein biosynthesis in every organism. Here we present high-resolution cryo-EM structures of the 80S ribosome from a thermophilic fungus in two rotational states, which due to increased 80S stability provide a number of mechanistic details of eukaryotic translation. We identify a universally conserved 'nested base-triple knot' in the 26S rRNA at the polypeptide tunnel exit with a bulged-out nucleotide that likely serves as an adaptable element for nascent chain containment and handover. We visualize the structure and dynamics of the ribosome protective factor Stm1 upon ribosomal 40S head swiveling. We describe the structural impact of a unique and essential m1acp3 Ψ 18S rRNA hyper-modification embracing the anticodon wobble-position for eukaryotic tRNA and mRNA translocation. We complete the eEF2-GTPase switch cycle describing the GDP-bound post-hydrolysis state. Taken together, our data and their integration into the structural landscape of 80S ribosomes furthers our understanding of protein biogenesis.


Assuntos
Chaetomium/metabolismo , Microscopia Crioeletrônica/métodos , Fator 2 de Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Ribossômico/química , Ribossomos/química , Ribossomos/metabolismo , Chaetomium/química , Fator 2 de Elongação de Peptídeos/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo
5.
Nat Prod Res ; 36(18): 4605-4613, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34736358

RESUMO

Four new depsidones, mollicellins V-Y (1-4), together with eight known depsidones (5-12) were isolated from the endophytic fungus, Chaetomium brasiliense, detached from stems of Thai rice. Their structures were determined by extensive spectroscopic methods. Mollicellins X, H, and F (3, 8 and 10) showed potent cytotoxicity against the human oral epidermoid carcinoma (KB) cell line, and mollicellin F (10) also showed a potent cytotoxicity against the human hepatocellular carcinoma (HepG2) cell line. Besides, mollicellin B (11) exhibited cytotoxicity against the colorectal adenocarcinoma (HT-29) cell line. Moreover, most of the isolated depsidones displayed potent antibacterial activity against Gram-positive bacteria, Bacillus cereus and Bacillus subtilis, and several of them showed moderate activity against Methicillin-resistant Staphylococcus aureus (MRSA) and clinical isolates of S. aureus. In addition, a few of them also showed moderate activity against a Gram-negative bacteria Pseudomonas aeruginosa.


Assuntos
Antineoplásicos , Chaetomium , Staphylococcus aureus Resistente à Meticilina , Oryza , Antibacterianos/química , Antineoplásicos/química , Chaetomium/química , Depsídeos , Humanos , Lactonas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sordariales , Staphylococcus aureus , Tailândia
6.
J Asian Nat Prod Res ; 24(8): 769-776, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34581233

RESUMO

Rubichaetoglobin A (1), a new cytochalasan alkaloid, together with nine closely related known ones (2-10), were isolated from the ethyl acetate extracts of the endophytic fungus Chaetomium tectifimeti S104 harbored in the root of Rubia podantha Diels. Their structures were elucidated based on comprehensive spectroscopic analysis. All isolated compounds were tested for cytotoxic, antibacterial, and nitric oxide inhibitory activities. The results showed that 2, 4, and 5 possessed moderate cytotoxicity against MDA-MB-231 cells with the IC50 values of 19.14, 11.43, and 10.27 µM, respectively.


Assuntos
Alcaloides , Antineoplásicos , Chaetomium , Alcaloides/química , Antineoplásicos/química , Chaetomium/química , Citocalasinas/química , Estrutura Molecular
7.
Nat Prod Res ; 36(14): 3603-3609, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33487054

RESUMO

Two novel cytochalasans, armochaetoglasin J (1) and armochaetoglasin K (2), along with 14 known analogues (3-16) were isolated from Chaetomium globosum. Their structures were elucidated by HRESIMS, NMR spectroscopy, single-crystal X-ray crystallography, and ECD spectra. Armochaetoglasins J and K were found to be inactive against the HepG2, HT-29, K562, HL-60, and A549 cancer cell lines.


Assuntos
Chaetomium , Chaetomium/química , Cristalografia por Raios X , Citocalasinas/química , Células HL-60 , Humanos
8.
Planta Med ; 88(14): 1293-1298, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34963184

RESUMO

Two new cytochalasans with a rare 6/6/5/5/7 pentacyclic ring system, named chaetoconvosins C-D (1: -2: ), together with two known congeners (3: -4: ), were isolated from the fermentation of an endophytic fungus, Chaetomium sp. SG-01, harbored in the fibrous roots of Schisandra glaucescens Diels. Their structures including the absolute configuration were elucidated by extensive spectroscopic (HRESIMS, NMR, and ECD) and X-ray crystallographic analyses. The TRAIL-resistance-overcoming activity of 1: -4: in a TRAIL-resistant HT29 colorectal cancer cell line was evaluated, which revealed that co-treatment of 1: -4: at 50 µM with TRAIL (150 ng/mL) reduced the HT29 cell viability by 19.0%, 24.1%, 17.9%, and 15.5%, respectively, compared to treatment with 1: -4: alone.


Assuntos
Alcaloides , Chaetomium , Chaetomium/química , Chaetomium/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Citocalasinas/farmacologia , Citocalasinas/química , Estrutura Molecular
9.
J Nat Prod ; 84(12): 3044-3054, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34846889

RESUMO

Overexpression of various pro-inflammatory factors in microglial cells tends to induce neurodegenerative diseases, for which there is no effective therapy available. Aureonitol (1) and seven analogues, including six previously undescribed [elatumenol A-F (2-4, 6-8, respectively)], along with two new orsellinic acid esters [elatumone A and B (9 and 10)], were isolated from Chaetomium elatum. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including high-resolution mass spectra and one- and two-dimensional NMR, and absolute configurations determined by the Mosher method, dimolybdenum tetraacetate-induced circular dichroism, and theoretical calculations including electronic circular dichroism and NMR. Metabolites 3, 4, 7, and 8 exhibited antineuroinflammatory activity by attenuating the production of inflammatory mediators, such as nitric oxide, interleukin-6, interleukin-1ß, tumor necrosis factor-α, and reactive oxygen species. Western blot results indicated 8 decreases the level of inducible nitric oxide synthase and cyclooxygenase-2 and suppresses the expression of Toll-like receptor 4 and nuclear factor kappa-B (NF-κB) as well as the phosphorylation of the inhibitor of NF-κB and p38 mitogen-activated protein kinases in lipopolysaccharide-activated BV-2 microglial cells.


Assuntos
Anti-Inflamatórios/farmacologia , Chaetomium/química , Furanos/farmacologia , Microglia/efeitos dos fármacos , Resorcinóis/farmacologia , Animais , Ésteres/química , Furanos/química , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/antagonistas & inibidores , Resorcinóis/química , Análise Espectral/métodos
10.
Int J Biol Macromol ; 188: 863-869, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400231

RESUMO

This study investigated the effect of molecular weight on antibacterial activity of polysaccharides. Results showed that low molecular weight (3.105 × 104 Da) polysaccharide (GCP-2) had higher inhibitory effects against Escherichia coli and Staphylococcus aureus than high molecular weight (5.340 × 104 Da) polysaccharide (GCP-1). Meanwhile, antibacterial activities of GCP-2 and GCP-1 against S. aureus were higher than those of E. coli. Minimum inhibitory concentrations (MICs) of GCP-1 against E. coli and S. aureus were 2.0 mg/mL and 1.2 mg/mL, and MICs of GCP-2 against E. coli and S. aureus were 1.75 mg/mL and 0.85 mg/mL, respectively. Antibacterial mechanisms investigation revealed that GCP-2 and GCP-1 influenced cell membrane integrity, Ca2+-Mg2+-ATPase activity on cell membrane and calcium ions in cytoplasm of E. coli and S. aureus, but not cell wall. Present work provided important implications for future studies on development of antibacterial polysaccharides based on molecular weight feature.


Assuntos
Antibacterianos/farmacologia , Chaetomium/química , Polissacarídeos/farmacologia , ATPase de Ca(2+) e Mg(2+)/metabolismo , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Citoplasma/metabolismo , Condutividade Elétrica , Escherichia coli/efeitos dos fármacos , Íons , Testes de Sensibilidade Microbiana , Peso Molecular , Staphylococcus aureus/efeitos dos fármacos
11.
Eur J Pharmacol ; 910: 174459, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34464601

RESUMO

Chaetocin is a natural metabolite product with various biological activities and pharmacological functions isolated from Chaetomium species fungi belonging to the thiodiketopyrazines. Numerous studies have demonstrated a wide range of antitumor activities of chaetocin in vitro and in vivo. Several studies have demonstrated that chaetocin suppresses the growth and proliferation of various tumour cells by regulating multiple signalling pathways related to tumour initiation and progression, inducing cancer cell apoptosis (intrinsic and extrinsic), enhancing autophagy, inducing cell cycle arrest, and inhibiting tumour angiogenesis, invasion, and migration. The antitumor effects and molecular mechanisms of chaetocin are reviewed and analysed in this paper, and the prospective applications of chaetocin in cancer prevention and therapy are also discussed. This review aimed to summarize the recent advances in the antitumor activity of chaetocin and to provide a rationale for further exploring the potential application of chaetocin in overcoming cancer in the future.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Produtos Biológicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Chaetomium/química , Modelos Animais de Doenças , Humanos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Neoplasias/patologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Appl Biochem Biotechnol ; 193(11): 3570-3585, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34313919

RESUMO

The current study was conducted to evaluate the antiproliferative and oxidative damage protection potential of endophytic fungi Aspergillus fumigatus and Chaetomium globosum isolated from Moringa oleifera. The chloroformic extract (CE) of both the fungi showed dose dependent antiproliferative activity against human prostate adenocarcinoma (PC-3) cell line with (IC50) value of 0.055 mg/ml and 0.008 mg/ml, respectively. Further, CE of both the fungi was studied for their ability to induce apoptosis in PC-3 cell line. Various deformities in the cancerous cells treated with CE of both the fungi have been observed by confocal microscopy which indicates the cell death by apoptosis. Further apoptosis inducing ability of CE of both the fungi was observed using various flow cytometric studies. The chloroformic extract of both the fungi showed slight increase in the level of reactive oxygen species to induce apoptosis. It also showed arrest of cancerous cells at G0/G1 phase of cell cycle to induce apoptosis. The externalization of phosphatidylserine (PS) to induce apoptosis was also observed when analysed using Annexin V-FITC/PI double staining assay where the CE of A. fumigatus and C. globosum showed the total apoptosis of 94.2% and 90.3%, respectively, at the highest tested concentration of GI70. The CE of both the fungi further showed the protective behaviour for plasmid DNA pBR322, when tested for their effect against the oxidative stress caused by the Fenton's reagent. Thus, the studies demonstrated a good antiproliferative and oxidative damage protection potential of the endophytic fungi.


Assuntos
Antioxidantes , Aspergillus fumigatus/química , Proliferação de Células/efeitos dos fármacos , Chaetomium/química , Misturas Complexas , Endófitos/química , Moringa oleifera/microbiologia , Neoplasias da Próstata , Antioxidantes/química , Antioxidantes/farmacologia , Misturas Complexas/química , Misturas Complexas/farmacologia , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
13.
Nat Commun ; 12(1): 3973, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172751

RESUMO

In human cells, P5B-ATPases execute the active export of physiologically important polyamines such as spermine from lysosomes to the cytosol, a function linked to a palette of disorders. Yet, the overall shape of P5B-ATPases and the mechanisms of polyamine recognition, uptake and transport remain elusive. Here we describe a series of cryo-electron microscopy structures of a yeast homolog of human ATP13A2-5, Ypk9, determined at resolutions reaching 3.4 Å, and depicting three separate transport cycle intermediates, including spermine-bound conformations. Surprisingly, in the absence of cargo, Ypk9 rests in a phosphorylated conformation auto-inhibited by the N-terminus. Spermine uptake is accomplished through an electronegative cleft lined by transmembrane segments 2, 4 and 6. Despite the dramatically different nature of the transported cargo, these findings pinpoint shared principles of transport and regulation among the evolutionary related P4-, P5A- and P5B-ATPases. The data also provide a framework for analysis of associated maladies, such as Parkinson's disease.


Assuntos
ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Espermina/metabolismo , Transporte Biológico , Chaetomium/química , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Fosforilação , Conformação Proteica , ATPases Translocadoras de Prótons/genética
14.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974911

RESUMO

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Assuntos
Chaetomium , Proteínas Fúngicas , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferase , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo
15.
Fitoterapia ; 151: 104874, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33667565

RESUMO

Chemical investigation on the solid rice culture of Chaetomium globosum D38, an endophytic fungus derived from Salvia miltiorrhiza, has afforded two new 19,20-seco-chaetoglobosins, salchaetoglobosins A (1) and B (2), along with three known analogues, chaetoglobosins E (3), Fex (4), and Vb (5). Their structures and absolute configurations were elucidated by a set of spectroscopy and single-crystal X-ray crystallography. Compounds 1-5 were evaluated for their cytotoxic activities against HCT-116 (colorectal carcinoma) and PC3 (prostate cancer) cells, as well as the NO production inhibitory effects in LPS-stimulated RAW264.7 cells.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Chaetomium/química , Alcaloides Indólicos/farmacologia , Salvia miltiorrhiza/microbiologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos/isolamento & purificação , China , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Alcaloides Indólicos/isolamento & purificação , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Células PC-3 , Células RAW 264.7
16.
Structure ; 29(7): 721-730.e6, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33651974

RESUMO

Hsp104 and its bacterial homolog ClpB form hexameric ring structures and mediate protein disaggregation. The disaggregated polypeptide is thought to thread through the central channel of the ring. However, the dynamic behavior of Hsp104 during disaggregation remains unclear. Here, we reported the stochastic conformational dynamics and a split conformation of Hsp104 disaggregase from Chaetomium thermophilum (CtHsp104) in the presence of ADP by X-ray crystallography, cryo-electron microscopy (EM), and high-speed atomic force microscopy (AFM). ADP-bound CtHsp104 assembles into a 65 left-handed spiral filament in the crystal structure at a resolution of 2.7 Å. The unit of the filament is a hexamer of the split spiral structure. In the cryo-EM images, staggered and split hexameric rings were observed. Further, high-speed AFM observations showed that a substrate addition enhanced the conformational change and increased the split structure's frequency. Our data suggest that split conformation is an off-pathway state of CtHsp104 during disaggregation.


Assuntos
Difosfato de Adenosina/metabolismo , Chaetomium/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Chaetomium/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas Fúngicas/química , Microscopia de Força Atômica , Modelos Moleculares , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
17.
Sci Rep ; 11(1): 4760, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637771

RESUMO

Soil is considered an extensively explored ecological niche for microorganisms that produce useful biologically active natural products suitable for pharmaceutical applications. The current study aimed at investigating biological activities and metabolic profiles of three fungal strains identified from different desert sites in Saudi Arabia. Soil fungal isolates were collected from AlQasab, Tabuk, and Almuzahimiyah in Saudi Arabia and identified. Furthermore, their antibacterial activity was investigated against Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli in blood, nutrient, and Sabouraud dextrose agars. Moreover, fungal extracts were evaluated on cell viability/proliferation against human breast carcinoma and colorectal adenocarcinoma cells. To identify the biomolecules of the fungal extracts, High-performance liquid chromatography HPLC-DAD coupled to analytical LC-QTOF-MS method was employed for fungal ethyl acetate crude extract. Identified fungal isolates, Chaetomium sp. Bipolaris sp. and Fusarium venenatum showed varied inhibitory activity against tested microbes in relation to crude extract, microbial strain tested, and growth media. F. venenatum showed higher anticancer activity compared to Chaetomium sp. and Bipolaris sp. extracts against four of the tested cancer cell lines. Screening by HPLC and LC/MS-QTOF identified nine compounds from Chaetomium sp. and three from Bipolaris sp. however, for F. venenatum extracts compounds were not fully identified. In light of the present findings, some biological activities of fungal extracts were approved in vitro, suggesting that such extracts could be a useful starting point to find compounds that possess promising agents for medical applications. Further investigations to identify exact biomolecules from F. venenatum extracts are needed.


Assuntos
Bipolaris/metabolismo , Chaetomium/metabolismo , Fusarium/metabolismo , Metaboloma , Microbiologia do Solo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bipolaris/química , Linhagem Celular Tumoral , Chaetomium/química , Cromatografia Líquida de Alta Pressão , Clima Desértico , Descoberta de Drogas , Fusarium/química , Humanos , Espectrometria de Massas , Arábia Saudita
18.
Carbohydr Polym ; 251: 117129, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142660

RESUMO

In this study, a polysaccharide (CGP-BG) was successfully produced from waste distillers' grain by Chaetomium globosum CGMCC 6882. Chemical analysis demonstrated that CGP-BG contained 3.49 ± 0.51 % protein. The molecular weight of CGP-BG was 52.37 KDa, which was composed of rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in the molar ratio of 4.11:7.34:13.31:20.99:1.07:0.91:4.75:0.36. In vitro assay showed that CGP-BG had scavenging activities on hydroxyl radical, DPPH radical, superoxide anion, and ABTS radical in a dose-dependent manner. Meanwhile, CGP-BG significantly inhibited nitric oxide and pro-inflammatory cytokine (TNF-α, IL-6, and IL-1ß) production in the lipopolysaccharide (LPS)-induced RAW 264.7 cells. Moreover, CGP-BG notably improved the antioxidant status of LPS-treated macrophages by enhancing superoxide dismutase, glutathione peroxidase, and antioxidant capacity and mitigating malondialdehyde. This work provided the basis for the application of CGP-BG as an anti-inflammatory and antioxidant agent.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Chaetomium/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Animais , Anti-Inflamatórios/química , Antioxidantes/metabolismo , Citocinas/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Polissacarídeos/química
19.
Org Lett ; 22(24): 9665-9669, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33270452

RESUMO

Four novel rearranged cytochalasans (1-4) were isolated from an endophytic fungus Chaetomium globosum P2-2-2. Pchaeglobolactone A (1) possessed an unprecedented 13-aza-21-oxa-tetracyclo-[10.6.1.217,19.015,19]henicosane core. Spiropchaeglobosin A (2) was the first example of cytochalasans featuring a novel spiro[5.10]hexadecane unit. Pchaeglobosals A (3) and B (4) featured a unique 5/5/13 fused tricyclic ring system. Compounds 1-4 were tested for their antiproliferative, apoptosis, cell cycle arrest, and TRAIL-resistance-overcoming activities on cancer cell lines.


Assuntos
Antineoplásicos/química , Chaetomium/química , Citocalasinas/química , Citocalasinas/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fenômenos Bioquímicos , Citocalasinas/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
20.
Nucleic Acids Res ; 48(21): 12282-12296, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196848

RESUMO

The superfamily 2 helicase XPB is an integral part of the general transcription factor TFIIH and assumes essential catalytic functions in transcription initiation and nucleotide excision repair. The ATPase activity of XPB is required in both processes. We investigated the interaction network that regulates XPB via the p52 and p8 subunits with functional mutagenesis based on our crystal structure of the p52/p8 complex and current cryo-EM structures. Importantly, we show that XPB's ATPase can be activated either by DNA or by the interaction with the p52/p8 proteins. Intriguingly, we observe that the ATPase activation by p52/p8 is significantly weaker than the activation by DNA and when both p52/p8 and DNA are present, p52/p8 dominates the maximum activation. We therefore define p52/p8 as the master regulator of XPB acting as an activator and speed limiter at the same time. A correlative analysis of the ATPase and translocase activities of XPB shows that XPB only acts as a translocase within the context of complete core TFIIH and that XPA increases the processivity of the translocase complex without altering XPB's ATPase activity. Our data define an intricate network that tightly controls the activity of XPB during transcription and nucleotide excision repair.


Assuntos
Adenosina Trifosfatases/química , Chaetomium/química , DNA/genética , Proteínas Fúngicas/química , Subunidades Proteicas/química , Fator de Transcrição TFIIH/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Chaetomium/genética , Chaetomium/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA